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Section 1: Theoretical derivation on energy-width scaling of antidark solitons. 

 Theoretically, the light propagation in single mode fibers in the near-zero GVD regime 

is described by the normalized NLSE of the form in the normal dispersion regime [Phys. Lett. A 

395, 127226 (2021)]: 
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Where 𝛽3is the normalized third-order dispersion (TOD) coefficient of the single mode fiber. 

Under small amplitude approximation, E. q (1.1) has the solution of, 
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Where 𝑎 is a small amplitude, and has the form of, 
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Where 𝑢0 is the amplitude of the continuous wave background, and  𝜇 = 𝜀/𝑢0, 𝜀 is an arbitrary 

value, 𝜎 = ±1, 𝛾 = 1/𝛽3𝑢0, 𝑍 ≈ 𝜇𝑢0(𝜏 − 𝑢0𝜎𝑧) and, 

0( ) [ ( 4 ) / ( )]tanhZ Z      = + + +                              (1.4) 

Where 𝜙0 is an arbitrary phase factor. Mathematically, E. q (1.1) admits not only antidark 

soliton solution but also conventional bright soliton solutions in the anomalous dispersion 

regime, in the form of sech(𝜏). Based on E. q (1.3), we first plot the energy-width relation of 

the antidark solitons and compare the energy-width relation with the conventional bright 

solitons, the results is shown in Fig. S1. It is obvious that compared to the conventional bright 

solitons, antidark solitons present advantageous in energy-pulse scaling, that is, at same pulse 

width, the energy of antidark soliton scales like 𝐸 ∝ 𝑠𝑒𝑐ℎ4(𝜏), while for bright solitons, it 

scales like 𝐸 ∝ 𝑠𝑒𝑐ℎ2(𝜏). Thus, these results could open a way for the generation of high-



energy, ultrashort pulses that arise from self-phase modulation and higher-order cavity 

dispersion. 

 

Fig. S1 Energy-width relationship for antidark and conventional bright solitons. Blue dotted line: energy-pulse 

width relation of antidark solitons; The energy is calculated based on E. q (1.3), e.g, 𝐸𝑎𝑛𝑡𝑖𝑑𝑎𝑟𝑘 = 𝑎2 ∝ 𝑠𝑒𝑐ℎ4(𝜏); Red 

square line: energy-pulse width relation of conventional solitons, e.g, 𝐸𝑏𝑟𝑖𝑔ℎ𝑡  = 𝑠𝑒𝑐ℎ2(𝜏) . aaraeeters used in the 

theoretical eodel: 𝛽3 = 0.5; 𝑢0 = 1; 𝜎 = −1;  𝜇 = 1.5. 

In addition to the energy-width scaling plot, we also theoretically investigate the influence 

of TOD on the energy-width scaling, a typical result is presented in Fig. S2. Briefly, we have 

shown that the merit of energy-width scaling of antidark solitons could further be stressed by 

increasing the strength of TOD. It is clear that as the TOD coefficient is increased from 0.4 to 

0.6, the energy of the antidark solitons undergoes significant amplification.   

 

Fig. S2 Energy-width relationship for antidark under different strengths of TOD. Blue triangular line: 𝛽3 =

0.6; Red dotted line: 𝛽3 = 0.5; Green dotted line: 𝛽3 = 0.4. 



 

 

Section 2: Experimental setup and results 

Section 2.1: Experimental setup  

 

Fig. S3 A schematic of the fiber ring laser. Orange circle line: Single eode fiber; Green circle line: Erbiue-doped 

fiber; Red circle line: Dispersion coepensation fiber. Erbiue-doped fiber (OFS-EDF80 with GVD coefficient of 𝛽2 =

63.4 𝑝𝑠2 𝑘𝑚−1), dispersion shifted fiber (DCF with GVD coefficient of 𝛽2 = 5.1 𝑝𝑠2 𝑘𝑚−1) and stand single eode fiber 

(SMF-28 with GVD coefficient of 𝛽2 = −23.8 𝑝𝑠2 𝑘𝑚−1). 

Fig. S3 shows a schematic of our fiber ring laser. Experimentally, to separately observe the 

two orthogonal polarization components of the light field, the laser output is first sent to a fiber 

pigtailed polarization beam splitter and then monitored with a high-speed detection system 

consisting of two 40GHz photodetectors (Newport, Model 1014) and a 33GHz bandwidth real-

time oscilloscope (Agilent Technologies, DSA-93204 A). An extra polarization controller (PC2) 

is inserted between the laser output and the beam splitter to balance the linear polarization 

change induced by the lead fibers. Finally, an optical spectrum analyzer (Yokogawa, AQ6375) 

is used to monitor the optical spectrum of the laser emission.   

 

 



 

 

Section 2.2: Estimation of ZGVD point in the experimental setup 

 

Fig. S4 Coexistence of dark and antidark solitons in normal GVD close to the ZGVD point. a. Teeporal trace. 

b. Optical spectra of a. 

 In our experimental studies, the central wavelength of the ZGVD point is estimated 

through an “spectral analysis method”. We first operate the fiber laser at near zero dispersion 

regime by selecting 3 m EDF, 8 m SMF, and 0.1 m DCF, thus the net averaged cavity dispersion 

is tuned at near ZGVD regime, i.e, (𝛽2,𝑎𝑣𝑒 = 0.005 𝑝𝑠2/𝑘𝑚 ). Experimentally, the central 

wavelength of laser emissions could be slightly tuned (e.g, from 1580 to 1588 nm in our 

experimental setup). In prior studies, we have shown that at near ZGVD regime, independent 

formation of scalar dark and scalar bright solitons is possible. To verify this result, in the current 

experimental setup, we first operate the laser at the net normal cavity dispersion regime by 

tuning the central wavelength of emission to the shorter wavelength side, i.e, 1582nm, a state 

of coexistence of scalar dark and antidark solitons is obtained as shown in Fig. S4. Theoretical 

studies have shown that antidark solitons are only supported by third-order dispersion [Phys. 

Rev. A 44, R1446(R) (1991)], in this context, the appearance of antidark solitons in Fig. S4(a) 

indicates that the net cavity dispersion is now tuned very close to the ZGVD point. In parallel 

with the dark soliton formations, when we shift the central wavelength of laser emission to the 

longer wavelength, i.e, 1585nm, a typical scalar bright soliton emission state is obtained. In 

particular, in such an active fiber laser (without mode-locking mechanism), the formation of 



bright solitons is associated with several modulation instabilities [J. Opt. Soc. Am. B 31, 3050-

3056 (2014)], under this formation mechanism, the bright solitons always characterized by a 

quantization feature as shown in Fig. S5. Starting from such a pure bright soliton emission state, 

if we continue vary the intracavity PC paddles until the central wavelength of the laser emission 

shift towards to 1583nm, a state of coexistence of scalar bright and dark solitons is obtained as 

shown in Fig. S6. Upon formation, the scalar dark and bright solitons could either 

independently propagate across the ZGVD point or undergo attractive interactions, leading to 

the formation of ordinary dark-bright solitons (ODBSs) [8]. Moreover, if we compare the 

spectral characteristics shown in Figs. S4(b) and S5(c) to those shown in S6(c), it is obvious 

that the optical spectrum shown in Fig. S6(c) is a result of the super-position of two parts, the 

shaded part is due to the scalar dark solitons, and the blue shaded part belongs to the bright 

solitons. We emphasize that this coexistence state is only possible at the near ZGVD point in a 

laser, where the spectra of solitons have well extended across the ZGVD point. Indeed, with 

the aid of such a “spectral analysis” technique, we can thus estimate that the ZGVD point of 

our experimental setup is roughly around 1583 nm. 

 

Fig. S5 Formation of bright solitons in the anomalous GVD regime. a. Evolution of bright solitons over 20 cavity 

roundtrips. b. Teeporal trace on scalar bright solitons. c. Optical spectrue of a. 



         

 

Fig. S6 Coexistence of scalar dark and bright solitons across the ZGVD point. a. Evolution of bright and dark 

solitons over 50 cavity roundtrips. b. Teeporal trace on scalar dark and bright solitons. c. Optical spectra of a. 

 

Section 2.3: Experimental results on scalar dark and antidark solitons 

 

Fig. S7 Evolution of the dark and antidark solitons. a. Evolution of dark solitons over ten cavity roundtrips. b. 

Evolution of antidark solitons over ten cavity roundtrips. 

 The main purpose of the paper is to experimentally investigate the various third-order 

dispersion supported soliton molecules (CDSMs), including vector dark-anitdark solitons, 

vector antidark solitons, and vector antidark soliton molecules, formed in a weakly birefringent 

fiber laser at near zero-group velocity dispersion (ZGVD) points. However, in a weakly 

birefringent fiber cavity because the XPM effect will greatly complicate the soliton dynamics, 

in order to easily understand the formed vector soliton dynamics, we first built a scalar fiber 

laser cavity (follow the same cavity structure as reported in [Phys. Lett. A 395, 127226 (2021)]) 

to study intrinsic properties of the scalar dark and antidark solitons. Specifically, we have 



repeated the formation of dark and antidark solitons and confirmed that the formation of 

antidark solitons is a general feature of light propagation in SMFs under dominate effect of 

TOD.  Unlike the formation of dark solitons which is threshold-less [Opt. Express. 22, 19831 

(2014)], the appearance of antidark solitons would require slightly large intracavity power. Fig. 

S4 shows the typical evolution states we measured on the emission of pure dark and antidark 

solitons respectively. In [Phys. Lett. A 395, 127226 (2021)], we have theoretically studied the 

properties of dark and antidark solitons and showed that due to the anti-phase properties, the 

dark and antidark solitons always propagate at opposite directions in the cavity undergoing 

repulsive interactions, this feature is clearly unfolded in Fig. S7, for instance, the dark solitons 

are travelling towards right (marked by the red arrow pointing direction) while the antidark 

solitons are travelling towards left (marked by the black arrow pointing direction). In addition, 

the moving speed of the dark and antidark solitons is remarkably slower than that of the 

conventional bright solitons formed in the mode-locked laser systems [Laser & Photonics 

Reviews. 12, 1800009 (2018)]. 

 

Section 2.4: Quantify of normalized TOD coefficient 

 

∆𝜆1 = 𝜆1,S2 − 𝜆1,soliton  = 1584 − 1582

= 2𝑛𝑚 

∆𝜐𝑑1 =
𝑐 ∙ ∆𝜆1

(𝜆1,soliton)
2 = 2.397 × 1011Hz 

𝑇0 = 1.2 𝑝𝑠 

𝛿3 = 0.452 

a 

∆𝜆2 = 𝜆2,S2 − 𝜆2,soliton  = 1587

− 1582.5
= 4.5𝑛𝑚 

∆𝜐𝑑2 =
𝑐 ∙ ∆𝜆2

(𝜆2,soliton)
2 = 5.39 × 1011Hz 

𝑇0 = 1.2 𝑝𝑠 

𝛿3 = 1.9 

b 

∆𝜆3 = 𝜆3,S2 − 𝜆3,soliton  = 1588

− 1582.8
= 5.2𝑛𝑚 

∆𝜐𝑑3 =
𝑐 ∙ ∆𝜆3

(𝜆3,soliton)
2 = 6.227 × 1011Hz 

𝑇0 = 1.2 𝑝𝑠 

𝛿3 = 2.236 

c 

 



Fig. S8 Quantify of TOD in the laser systee. Calculated norealized TOD coefficients, froe left to right a-c, for the 

pure dark soliton, antidark soliton and antidark soliton eolecule eeission states based on the frequency shift of the 

soliton sidebands. 

In Supplementary section 2.2, we have conducted a series of experiments to estimate that 

the central wavelength of our laser system is located at 1583nm. Furthermore, in order to 

confirm that the antidark solitons are formed as a result of TOD, we introduce a spectral analysis 

method to quantify the normalized TOD in our experiments. It is to note that in general case, a 

dispersive wave cannot be phase matched with a fundamental soliton whose wave number lies 

in a range of forbidden for a linear dispersive wave. However, the presence of TOD can lead a 

phase-matched situation in which energy is transferred from soliton to the dispersive wave at a 

specific frequency [Phys. Rev. A 79, 023824 (2009)], and this frequency is given by a relatively 

simple expression,  

Δ𝜈𝑑𝑇0 ≈
(1+4𝛿3

2)

4𝜋𝛿3
                                                     (2.1) 

Where Δ𝜈𝑑 = 𝜈𝑑 − 𝜈𝑠, and 𝜈𝑠 and 𝜈𝑑 are the carrier frequencies associated with the soliton and 

the dispersive wave, respectively. In our experiment, fine tuning the intracavity PC paddles will 

shift the central wavelength of the laser emissions (from Fig. S8a to S8c, the central wavelength 

of laser emission is approaching the ZGVD point), meanwhile, associated with the central 

wavelength shift, the enhancement of TOD will also perturb the dispersive waves emitted by 

solitons, as a result, the frequency shift of spectral sidebands become obvious. In particular, by 

using the spectral analysis method introduced in the supplementary section 2.2, we first can 

approximate the ZGVD wavelength of our laser locates at 1583nm. Therefore, starting from 

the vector dark soliton emission state (𝜆1,soliton = 1582𝑛𝑚), if we shift our central wavelength 

of laser emission to 𝜆3,soliton = 1582.8𝑛𝑚 , we could expect that the TOD effect will be 

enhanced, to support this claim, we have calculated the normalized TOD coefficient based on 

E.q. (2.1). In our experiment, from the autocorrelation trace which we appended in Figure 8b, 

if a sech-form pulse shape is assumed, the pulse width of the antidark soliton is around 1.2ps, 

therefore, in our calculation, we use 𝑇0 = 1.2 𝑝𝑠 . Then from the sideband frequency shift 



caused by the enhancement of TOD effect, through relationship (2.1) we can estimate the 

normalized TOD coefficient in our experiment to be 𝛿3 = 0.452, 1.9, 2.236 for the cases of 

pure dark soliton emission state, antidark soliton emission state, and antidark soliton molecule 

emission state, respectively. The calculation results indicate that as we shift the central 

wavelength of the laser emission towards the ZGVD point, the TOD effect becomes more and 

more obvious.  

  



 

Section 3: The simulation model 

 

Fig. S9 Scheeatic configuration of the fiber laser cavity used for nueerical sieulations. Blue solid line: Single eode 

fiber; Green solid line: Erbiue-doped fiber; Red solid line: Dispersion coepensation fiber. The color gradient indicates 

the evolution of the effective cavity dispersion. Blue color:  anoealous cavity dispersion; Red color:  noreal cavity 

dispersion.  

To make the simulation results directly comparable with the experimental observations, 

our simulations were conducted based on the real experimental fiber laser configuration as 

shown in Fig. S3. Fig. S9 shows the schematic configuration of the fiber laser cavity used for 

numerical simulations. We adopt a technique known as “pulse tracing” to simulate the laser 

operation. Briefly, when a light pulse circulates inside the cavity, the local fiber group velocity 

dispersion and birefringence varies with the fibers used. At different positions of the cavity, the 

pulse may present slightly different pulse shapes and energies. We note that as our cavity length 

is much shorter than the pulse dispersion and nonlinearity length, the dispersion-managed 

features are not dominant. Numerically, we have output the light pulse at different positions of 

the ring cavity and verified that the pulse properties are mainly determined by the averaged 

cavity parameters rather than that of the single segment of the fiber ring laser [Phys. Rev. Lett. 

82, 3988 (1999)]. 



The light propagation in the fibers is described by the coupled extended Ginzburg-Landau 

equations (CGLEs) [Appl. Phys. Rev. 6, 021313 (2019)],  
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Where 𝑢 and 𝑣 are the normalized envelopes of the optical fields at different wavelengths. 𝛿 =

1

2
(

1

𝑣𝑔𝑣
−

1

𝑣𝑔𝑢
) is the inverse group velocity difference between the modes.  𝛽2𝑢 and 𝛽2𝑣 are the 

second-order dispersion coefficients, 𝛽3𝑢  and 𝛽3v  are the third-order dispersion (TOD) 

coefficients for the lights.  𝛾 represents the averaged nonlinear coefficient of the fiber, 𝑔 is the 

saturable gain coefficient of the gain fiber and 𝛺𝑔  is the gain bandwidth. For the light 

propagation in the undoped fibers, 𝑔 = 0. In our simulations, the gain saturation is described 

by, 
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Where 𝑔0is the small signal gain coefficient and 𝐸𝑠𝑎𝑡 is the saturation energy. When the light 

meets the cavity output port, 10% of the light intensity is deducted from the light fields, and the 

rest of the light is then reinjected into the cavity as the input for the next round of cavity 

circulation. We used the standard split-step method to solve the coupled extended CGLEs (3.1). 

The numerical calculations were made on a 400  𝑝𝑠  window and the periodic boundary 

condition was used. Numerically, we studied the coexistence of vector dark and vector antidark 

solitons and the formation of vector dark-antidark solitons based on E. q. (3.1).  In addition, we 

also simulated the interactions between the scalar antidark solitons polarized along the same 

polarization axis by setting the XPM coupling coefficient to 2, 
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Noteworthy mentioning that although our current simulations are based on the CGLEs, under 

appropriate conditions, for example, if the gain bandwidth is larger than the soliton spectral 

bandwidth and the laser gain is balanced by the cavity losses, the CGLEs could be 



mathematically reduced to CNLSE [Optical Solitons: From Fibers to Photonic Crystals (Academic 

Press, 2003)]. 

 

Section 4: Simulation results on formation of vector antidark and vector dark solitons  

Fig. S10 shows the initial conditions we used for the simulations on antidark solitons. The 

details on the simulation parameters on Fig. S11 are described in Tab. S1. 

 

Fig. S10 Initially injected CW beae with a seall phase juep eebedded. Bule solid line: intensity of CW beae. 

Green solid line: eebedded phase juep at the eiddle position of the CW beae.  

 



Fig. S11 Simulation results on coexistence of vector dark and antidark solitons. a Evolution of antidark and 

dark soliton along the horizontal polarization axis. b Evolution of antidark and dark soliton along the vertical polarization 

axis. c Blue/red solid line: antidark and dark soliton foreed along horizontal/vertical polarization axes at the last cavity 

round trip. Green solid line: associated phase juep with the dark and antidark soliton. 

 

 

Fig. S12 Unstable foreation of vector antidark solitons. a Evolution of antidark and dark soliton along the horizontal 

polarization axis. b Evolution of antidark and dark soliton along the vertical polarization axis. c Blue solid line: antidark 

and dark soliton at the last cavity round trip. Green solid line: associated phase juep with the dark and antidark soliton. 

We start the simulation with two arbitrary weak CW beams and on top of the CW beams, 

a small phase jump is embedded, a typical pulse shape is presented in Fig. S10. We let the light 

circulate in the ring cavity. Our simulation is based on E. q. (3.1). To propagate the light in net 

normal GVD regime, we set the GVD coefficients of SMF along orthogonally polarized 

directions to be 𝛽2𝑢 =  𝛽2𝑣 =  −22.93 𝑝𝑠2/𝑘𝑚   (See Supplementary Tab. S1). We 

deliberately increase the coefficient of TOD to 0.1 𝑝𝑠3/𝑘𝑚  which can be experimentally 

realized by tuning the PC paddles until the central wavelengths of laser emissions locate even 

closer to ZGVD point, under appropriate power level, the dark and antidark solitons of 



comparable pulse widths are always simultaneously formed and they travel to the opposite 

directions in the cavity as displayed in Fig. S11. Numerically we found that the antidark solitons 

can only be formed when effect of TOD dominates the second order cavity dispersion. If we 

decrease the TOD coefficient to 𝛽3𝑢 =  𝛽3𝑢 = 0.01𝑝𝑠3/𝑘𝑚, no stable antidark solitons could 

be formed as shown in Supplementary Fig. S12. In comparison with the formation of scalar 

antidark solitons, numerically it was found that with the aid of cross-phase coupling (XPC), the 

power threshold for creating such a vector antidark soliton emission state is lower, suggesting 

that the XPC may provide a strong attractive force between them [Nonlinear Dyn. 94, 1351 

(2018)].  

  



 

Tab. S1. Parameters used for obtaining Fig. S11. 

 

  

Initial Pulse Shape Averaged cavity 

parameters 

SMF  EDF DCF  

 

 

 

𝑢 = 𝑣
= 𝐴 ∙ exp (𝑖 ∙ 𝑡𝑎𝑛ℎ(𝐵𝑡)) 

 

𝐴 = 0.05; 
𝐵 = 1; 

 

 

Net averaged cavity 

dispersion: 

 

𝛽2𝑢,𝑎𝑣𝑒 = 𝛽2𝑣,𝑎𝑣𝑒 = 

0.01 𝑝𝑠2/𝑘𝑚 

 

𝛽3𝑢,𝑎𝑣𝑒 = 𝛽3𝑣,𝑎𝑣𝑒 = 

0.1 𝑝𝑠3/𝑘𝑚  

 

𝛽2,𝑢= 𝛽2,𝑣= -22.93 

𝑝𝑠2/𝑘𝑚 
 

 

𝐿𝐵 = 5 𝑘𝑚 

 

L=8.0 𝑚 

𝛽2,𝑢= 𝛽2,𝑣= 63.4 

𝑝𝑠2/𝑘𝑚 
 

𝑔0 = 90 𝑘𝑚−1 

 

Ω𝑔= 80 𝑛𝑚 

 

Es=0.001 𝑛𝐽 

 

𝐿𝐵 = 0.5 𝑘𝑚 

 

L=3 𝑚 

𝛽2,𝑢= 𝛽2,𝑣= 5.1 

𝑝𝑠2/𝑘𝑚 

 

𝐿𝐵 = 0.5 𝑘𝑚 

 

L= 0.2 𝑚 

Net averaged cavity 

birefringence: 

 

𝛿𝑎𝑣𝑒 = 0.0005 𝑝𝑠/𝑘𝑚 

 

𝛾 =0.003 (𝑊𝑚)−1 

 

Cavity loss: 10% 

 



Section 5: Simulation results on formation of vector dark-antidark solitons 

Fig. S13 shows the initial pulse shape we used for the simulations on vector dark-antidark 

solitons. The details of the simulation parameters for Fig. S14 are described in Tab. S2. 

 

Fig. S13 Initially injected dark and antidark pulses with a slight walk-off between thee. Bule solid line: Initial pulse 

shape for the antidark solitons. Red solid line: Initial pulse shape for the dark solitons. Green dashed line: initial phase 

juep for the antidark solitons.  

 



Fig. S14 Sieulation results on foreation of stable vector dark-antidark solitons. a Evolution of antidark solitons. b 

Evolution of dark solitons. c Red solid line: dark soliton at the last cavity round trip. Blue solid line: antidark soliton at 

the last cavity round trip. Green dashed line: phase juep properties for the antidark soliton at the last cavity roundtrip.  

Our simulation is based on E. q. (3.1). We start the simulation with one pair of weak dark 

and antidark pulse. The dark pulse has the form of tanh (𝐴 ∙ 𝑡) and the antidark pulse has the 

form of (0.001 + 𝑠𝑒𝑐ℎ2(𝐴 ∙ 𝑡))exp (𝐵 ∙ 𝑖tanh(𝑡)). To investigate the dispersion dependence 

of dark and antidark solitons, we deliberately set the dispersion coefficient of TOD to be 

𝛽3𝑢,𝑎𝑣𝑒 = 0.1 𝑝𝑠3/𝑘𝑚  for the antidark solitons (which can be experimentally realized by 

tuning PC paddles until central wavelength emission close to the ZGVD point) and 𝛽3𝑣,𝑎𝑣𝑒 =

0.01 𝑝𝑠3/𝑘𝑚 for the dark solitons, as a result, vector dark-antidark solitons could be stably 

formed as shown in Fig. S14. Note that if we propagate the initial dark and antidark solitons 

with same TOD coefficient, i.e.,  𝛽3𝑢,𝑎𝑣𝑒 = 𝛽3𝑣,𝑎𝑣𝑒 = 0.01 𝑝𝑠3/𝑘𝑚, the antidark solitons will 

become unstable, similar to the case as shown in Fig. S12.  This result again evidences that the 

antidark solitons could only be supported when TOD dominates GVD. Moreover, if we start 

the simulation with a small group velocity mismatch, i.e, 𝛿 = 0.0005 𝑝𝑠/𝑘𝑚  along the 

orthogonal polarization axis by setting the beat length to be 𝐿𝐵 = 5 𝑘𝑚, the dark and antidark 

solitons always trap with each other during their propagation in the cavity, they form a typical 

“1+1 soliton molecule” consisting of a dark soliton polarized along the vertical axis and an 

antidark soliton polarized along the horizontal axis, which agrees well with the experimental 

observation as shown in Figure 6 in the article. On the contrary, if we start the simulation with 

a large group velocity mismatch i.e, 𝛿 = 0.005 𝑝𝑠/𝑘𝑚, this bound state between the dark and 

antidark soliton could be destroyed, as a result, the dark solitons are no longer captured by the 

antidark solitons polarized along the orthogonal polarization direction. Nonetheless, the one-

component dark and antidark solitons could still be stably formed along the orthogonal 

polarization axis, propagating independently.  



 
Fig. S15 Sieulation results on influence of enhanced TOD. TOD coefficient increased to 0.2  𝑝𝑠3/𝑘𝑚; a-b) Antidark 

soliton evolution over 10000 cavity roundtrips along orthogonal polarization directions. c) Antidark soliton pattern at last 

cavity roundtrip. 

 

 

 
Fig. S16 Sieulation results on influence of signs of TOD. a) TOD coefficient is -0.2 𝑝𝑠

3
/𝑘𝑚; b) TOD 

coefficient is 0.2 𝑝𝑠
3
/𝑘𝑚. 

 
 

Numerically, we also study the formation of vector antidark solitons. Upon their formation, 

we investigate the influence of TOD on the antidark solitons. Our simulation model is based on 

E. q. (3.1). We start the simulation with one pair of weak antidark pulse. Each antidark pulse 

has the form of (0.001 + 𝑠𝑒𝑐ℎ2(𝐴 ∙ 𝑡))exp (𝐵 ∙ 𝑖tanh(𝑡)). We first ensure that the dispersion 

satisfies the relation TOD > GVD to support the stable formation of antidark solitons, the 

simulation results are similar to those appeared in Fig. S14, and now a vector anti-dark soliton 

state is formed. Subsequently, in order to investigate the influence of TOD on the dynamics of 



antidark solitons, we keep all the other simulation parameters unchanged except increasing 

TOD coefficient to 0.2 𝑝𝑠3/𝑘𝑚. The simulation results are shown in Fig. S15. It is clear that 

the enhancement of TOD will result in an oscillation tail on the antidark soliton envelop. 

Furthermore, we also investigate the influence of the sign of TOD on the antidark solitons. 

Interestingly, we found that the signs of TOD will result in oscillation tails appearing at opposite 

directions on the antidark soliton envelop as shown in Fig. S16. It is interesting to note that the 

appearance and the direction of these oscillation tails could strongly affect the internal 

interaction degrees of freedom of soliton molecules (SMs).  



 
 

Tab. S2. Parameters used for obtaining Fig. S14. 

  

Initial Pulse Shape Averaged cavity 

parameters 

SMF  EDF DCF  

 

 

One pair of dark and 

antidark pulse in the 

form of  

 

𝑢
= (0.001 + 𝑠𝑒𝑐ℎ2(𝐴
∙ 𝑡))exp (𝐵 ∙ 𝑖tanh(𝑡)). 

 

𝑣 = tanh (𝐴 ∙ 𝑡) 

 

𝐴 = 1; 
𝐵 = 0.1; 

 

 

 

 

Net averaged cavity 

dispersion: 

 

𝛽2𝑣,𝑎𝑣𝑒 = 𝛽2𝑢,𝑎𝑣𝑒 

= 0.01 𝑝𝑠2/𝑘𝑚 

 

𝛽3𝑢,𝑎𝑣𝑒 = 0.1 𝑝𝑠3/𝑘𝑚 

𝛽3𝑣,𝑎𝑣𝑒 = 0.01 𝑝𝑠3/𝑘𝑚 

 

𝛽2𝑢,𝑆𝑀𝐹= -22.95 

𝑝𝑠2/𝑘𝑚 
 

𝛽2𝑣,𝑆𝑀𝐹= -22.93 

𝑝𝑠2/𝑘𝑚 

 

𝐿𝐵 = 5 𝑘𝑚 

 

L=8.0 𝑚 

𝛽2= 63.4 𝑝𝑠2/𝑘𝑚 

 

𝑔0 = 90 𝑘𝑚−1 

 

Ω𝑔= 80 𝑛𝑚 

 

Es=0.001 𝑛𝐽 

 

𝐿𝐵 = 5 𝑘𝑚 

 

L=3 𝑚 

𝛽2= 5.1 𝑝𝑠2/𝑘𝑚 

 

𝐿𝐵 = 5 𝑘𝑚 

 

L= 0.2 𝑚 

Net averaged cavity 

birefringence: 

 

𝛿𝑎𝑣𝑒 = 0.0005 𝑝𝑠/𝑘𝑚 

 

𝛾 =0.003 (𝑊𝑚)−1 

 

Cavity loss: 10% 

 



Section 6: Simulation results on formation of antidark soliton molecules 

Fig. S17 shows the initial pulse shape we used for the simulations on two scalar antidark 

solitons. The details of the simulation parameters for Fig. S18 are described in Tab. S3. 

 

Fig. S17 Initially injected two antidark pulses with a slight walk-off between thee. Bule solid line: Initial pulse 

shape for one of the antidark soliton. Red solid line: Initial pulse shape for another antidark soliton polarized along the 

saee polarization. Green dashed line: initial phase juep for the antidark solitons.  

 



Fig. S18 Sieulation results on one-coeponent antidark soliton eolecules. a, b: Evolution of the antidark solitons. 

c Red and blue solid lines: antidark solitons at the last cavity round trip. Green dashed line: phase juep properties for 

the antidark soliton at the last cavity roundtrip. 

To numerically investigate the interactions between antidark solitons along the same 

polarization, we changed the XPM coefficient in the E. q. (3.1) to 2, thus, our simulation is 

conducted based on E. q. (3.3). We start the simulation with two antidark pulses, each in the 

form of (0.001 + 𝑠𝑒𝑐ℎ2(𝐴 ∙ 𝑡)) exp(𝐵 ∙ 𝑖tanh(𝑡)).  First, to obtain the stable formation of 

antidark solitons, we must ensure that the TOD dominates GVD. To do this, we deliberately set 

the dispersion coefficient of TOD to 𝛽3𝑢,𝑎𝑣𝑒 = 𝛽3𝑣,𝑎𝑣𝑒 = 0.1 𝑝𝑠3/𝑘𝑚, as a result of TOD 

dominance, two antidark solitons could be stably formed as shown in Fig. S18. Numerically, 

we have studied the interactions between the antidark solitons under two cases. First, we have 

checked that under a small group velocity mismatch, i.e, δ=0.0005 ps/km, a bound state of two 

antidark solitons are observed as shown in Fig. S18a-b. Specifically, they propagate towards 

left with the same group velocity, in the form of antidark soliton molecules which agree well 

with the results obtained in Figure 9 in the article. However, if the group velocity mismatch 

becomes large, eventually the attractive force between the neighboring antidark soliton is no 

longer strong enough to overcome the group velocity mismatch, a trapping state could be 

destroyed, consequently, the scalar antidark solitons will be independently formed and undergo 

collisions. Despite the antidark solitons undergo attractive interactions, numerically, we also 

verified that the interactions between scalar dark and antidark solitons are repulsive. Briefly, if 

we propagate an antidark and a dark pulse along the same polarization, irrespective of how 

weak the group velocity mismatch is, the dark and antidark solitons cannot form a bound state, 

which matches well with the theoretical predictions in [Eur. Phys. J. D 66, 297 (2012)]. 

 

 

 

 



Tab. S3. Parameters used for obtaining Fig. S18. 

 

 

  

 

Initial Pulse Shape Averaged cavity 

parameters 

SMF  EDF DCF  

 

 

Two antidark pulses 

polarized along same 

polarization with each  

in the form of  

 

𝑢
= (0.001 + 𝑠𝑒𝑐ℎ2(𝐴
∙ 𝑡))exp (𝐵 ∙ 𝑖tanh(𝑡)). 

 

𝑣
= (0.001 + 𝑠𝑒𝑐ℎ2(𝐴
∙ 𝑡))exp (𝐵 ∙ 𝑖tanh(𝑡)) 

 

𝐴 = 1; 
𝐵 = 0.1; 

 

 

 

 

Net averaged cavity 

dispersion: 

 

𝛽2𝑣,𝑎𝑣𝑒 = 𝛽2𝑢,𝑎𝑣𝑒 

= 0.01 𝑝𝑠2/𝑘𝑚 

 

𝛽3𝑢,𝑎𝑣𝑒 = 0.1 𝑝𝑠3/𝑘𝑚 

𝛽3𝑣,𝑎𝑣𝑒 = 0.1 𝑝𝑠3/𝑘𝑚 

 

𝛽2𝑢,𝑆𝑀𝐹= -22.95 

𝑝𝑠2/𝑘𝑚 

 

𝛽2𝑣,𝑆𝑀𝐹= -22.93 

𝑝𝑠2/𝑘𝑚 

 

𝐿𝐵 = 5 𝑘𝑚 

 

L=8.0 𝑚 

𝛽2= 63.4 𝑝𝑠2/𝑘𝑚 

 

𝑔0 = 90 𝑘𝑚−1 

 

Ω𝑔= 80 𝑛𝑚 

 

Es=0.001 𝑛𝐽 

 

𝐿𝐵 = 5 𝑘𝑚 

 

L=3 𝑚 

𝛽2= 5.1 𝑝𝑠2/𝑘𝑚 

 

𝐿𝐵 = 5 𝑘𝑚 

 

L= 0.2 𝑚 

Net averaged cavity 

birefringence: 

 

𝛿𝑎𝑣𝑒 = 0.0005 𝑝𝑠/𝑘𝑚 

 

𝛾 =0.003 (𝑊𝑚)−1 

 

Cavity loss: 10% 

 


